CSE525 Lec9: Dynamic Programming
 000

time complexity: $O(1) \times O(n T)=O(n T)$ memo: 20 array of dimensions $i=O$ to n spare " : Keel two adj. rows $O(T) \rightarrow$ top to bottom/ $t=0$ to T Weighted Subset Sum with target
wis problem $=S(n, w)=$ bottom right dement lets to right. integer valued

Find largest value of any subset of $\mathrm{S}=\{\mathrm{sl}, \ldots, \mathrm{sn}\}$ with $\mathrm{wts} \mathrm{w}(1), \ldots, \mathrm{w}(\mathrm{n}) \&$ target W largest valued
Find the value of the heaviest subset from $\{1,2,3,4,5,6\}$ with wats $12,23,11,24,21,15$ and total weight at most 0 .
1,3,6 2,6 4,6
$\longrightarrow S(\mathrm{i})=$ value of the Crest,
$S(i)=$ optimal sublet for $\{s l \ldots s i\} \quad X$
backtracking algorithm does not pick si f if wt(si) $>\mathrm{W}$

- Else, it either picks si or does not pick si ...
$\rightarrow 0 \quad \mathrm{~S}(\mathrm{i}, \mathrm{t})=$ optimal value for $\{\mathrm{sl} \ldots$... si\} with target $=\mathrm{t}$
 $s(0, t)=O S(i, t)=$ optimal value for $\{$ si ... sin\} with target $=t$ $\delta(1, t)=$? Exercise s_{i} isnot included s_{i} is induced
opt-grolution fo $\left\{S_{1} \cdots S_{i}\right\}$

$=\left\{\begin{array}{l}\text { opt solution fr }\left\{s_{1} \cdots s_{i-1}\right\} \\ \rightarrow \text { feasible solution of }\left\{S_{1} \cdots s_{i}\right\}\end{array}\right.$
\rightarrow feasible solution of $\left\{s_{1} \cdots s_{i}\right\}$
$\operatorname{val}\left(s_{i}\right)+\begin{gathered}\text { ofor. solution } \\ {\left[s_{1} \cdots s_{i-1}\right]}\end{gathered}$

$$
\left\{S_{1} \cdots s_{i-11}\right\} \operatorname{tangt}=W \text { W }
$$

Min-wt Vertex Cover

$\mathrm{VC}=$ subset of vertices which cover every edge ut ofthe min vertexcover
Define VC(node) = solution of the subtree roote node.

Can you compute VC(10) using solutions for $\mathrm{VC}(20)$ and $\mathrm{VC}(30)$?

$$
=110 \quad=70 \times
$$

Think of a backtracking algorithm ! What are all the possible cases needed to compute solution for subtree(10)?

Memo: Tree, order: Startat leat, go up Min-wt Vertex Cover $(T)=A($ root, medest

Define problems A(node, b) where $\mathrm{b}=$ yes/no/maybe value of $A(\mathrm{v}, \mathrm{yes})=$ min-wt-VC of subtree under v in which v must be included
$A(\mathrm{v}, \mathrm{no})=$ min-wt-VC of subtree under vin which v must-not be included

A(v,maybe $)=$ min-wt-VC of subtree under v illwhich v may or may not be included
Q: Time-complexity \& Space-complexity? $\begin{aligned} & O(l) \times v \\ & =O(v)\end{aligned}, O(v)$
Q: What would be the base cases? $\begin{aligned} & A\left(l, y^{a}\right)=\omega^{*}(l) \\ & A\left(l, n_{0}\right)=? \text { ? } E_{x}\end{aligned}$

$\mathrm{v}=$	40	50	20
A(V)	400	100	?
Ayes(v)	400	200	
Ano(v)	600		
Amaybe(v)	400	100	$\begin{gathered} \min (A) \\ 20_{A} \\ 2 \end{gathered}$

$$
\begin{aligned}
& A\left(40, y_{0}\right)=40 \\
& A\left(40, n_{0}\right)=?
\end{aligned}
$$

$A=$ ne

Longest Balanced Subsequence

Describe and analyze an algorithm to compute the length of a longest balanced subsequence of a given string of parentheses and brackets. Your input is an array A[1 .. $\mathrm{n}]$, where $\mathrm{A}[\mathrm{i}] \in\{(),,[]$,$\} for every index i.$

A string s consisting of (,),[,] is balanced if it is of the form ($(\stackrel{l}{\text { ! }}$) or [si] or S1.S2 where S1 and S2 are balanced themselves.
$\operatorname{LBS}(\mathrm{i}, \mathrm{j})=$ length of longest balanced subsequence of $\mathrm{A}[\mathrm{i} \ldots \mathrm{j}]$

(1) $(L B S$ of $A[i+1 \cdots j-1])=$ Longest BS of $A[i \ldots j]$?
(2)
$\left.\begin{array}{l}\text { Suppose weused. } \operatorname{LBS}(l) ;() \\ \text { only (1) }\end{array}\right)=(\underbrace{\operatorname{LBS}(x)}_{0})=()$
(3) Longat $B S$ of $A[i \ldots j]=(\ldots)$

